
IsMatrix (in GAP 4.8.7) . . .

. . . is documented as a
“list of lists of equal length whose entries lie in a common ring”
–see lib/arith.gd.

. . . is implemented without the test for equal length
–see lib/list.gd and IsTableListDefault in src/lists.c.

IsRectangularTable is a property; however, for plain lists, it behaves
like a category, due to kernel support –see FN IS RECT in src/gap.h

and src/plist.c.

(Some old GAP library/package code calls IsMatrix in fact for
checking IsRectangularTable.)

Decide how to fix the inconsistency.

1 / 7

IsMatrix vs. IsMatrixObj

IsMatrix IsMatrixObj

nonempty may have zero rows or columns
dense list of hom. lists not nec. a list
contains ring elements not nec. commutative addition of entries
no stored/fixed BaseDomain stored BaseDomain

(DefaultRing is expensive)
not nec. rectangular (?) rectangular
also for Lie matrices implies IsOrdinaryMatrix

If IsMatrix would imply IsRectangularTable

and if the associativity condition for IsMatrixObj would be omitted
and if we regard the BaseDomain overhead for IsMatrix as acceptable
then we could define IsMatrix =⇒ IsMatrixObj,
and “migrate IsMatrix to IsMatrixObj”.

Otherwise, something like IsMatrixObjOrMatrix would be needed.

2 / 7

Available kinds of matrices

kind defining filter BaseD. file rows?

plain lists IsPlistRep – list.gd −
GF(2) matrices IsGF2MatrixRep GF(2) vecmat.gd +
GF(q) matrices IsGF2MatrixRep GF(q) mat8bit.gd +
“cmats” IsCMatRep GF(q) pkg/cvec +
block matrices IsBlockMatrixRep – matblock.gi −
wrapped lists IsPlistMatrixRep yes matobjplist.gd +

with memory IsObjWithMemory – memory.gd

Lie matrix IsLieObject – liefam.gd

NullMapMatrix IsNullMapMatrix – matrix.gi −
EmptyMatrix(p) IsEmpty – algmat.gi −

3 / 7

MatrixObj interface

Defining operations:
BaseDomain, NumberOfRows, NumberOfColumns, . . .

Representation preserving constructors:
NewMatrix, (New)ZeroMatrix, . . .

Arithmetics:
addition, multiplication, Zero, . . .

Access/modification:
m[i,j], CopySubMatrix, PositionNonZero, . . .
(restricted to admissible positions, restricted mutability)

Mathematical operations:
TraceMat, NullspaceMat, . . .
(declare for IsMatrixObj, implement generic methods using the low
level interface)

4 / 7

In-place conversion

Explicit conversions from Plist representations (or in-place change of
the “base domain”):

ConvertTo(GF2)VectorRep(NC), ConvertTo(GF2)MatrixRep(NC),
CONV GF2VEC, CONV GF2MAT, CONV MAT8BIT

Silently switching to a Plist representation (due to assignments)

Try to avoid this?

ImmutableMatrix is used frequently.
Is this the right solution?

5 / 7

Tasks

• Decide the relation between IsMatrix and IsMatrixObj,
define DefaultRing for the entries as BaseDomain of Plist
matrices,
introduce ZeroOfBaseDomain.

• In the (about 240) library methods that require IsMatrix, adjust
the code according to the IsMatrixObj interface.
(Avoid Zero(m[1][1]), m[i][j], and working with rows.)

• In the (about 90) library methods that call IsMatrix, decide if
one can use IsMatrixObj instead.

• Change m[i][j] to m[i,j].
(Only where really matrices are affected?)

• Check the library methods that create matrices:
What can be done in order to choose a suitable kind of matrix?

6 / 7

Tasks (continued)

• Replace PositionNot(obj, zero) by PositionNonZero(

obj).
(And change the default methods for PositionNonZero.)

• Replace EmptyMatrix and NullMapMatrix by IsMatrixObj

objects.

• Document and implement the interface.

• Provide test code.

• Provide further kinds of vectors/matrices.

7 / 7

